Что такое лазерная резка металла

Лазерная резка металла: особенности, преимущества, принципы работы

что такое лазерная резка металла

Лазерная резка – это современный и инновационный метод обработки металлических изделий и продукции для придания ей необходимых форм и создания разнообразных элементов. Технология такого воздействия на листовой металл позволяет выполнять многие работы. Универсальность использования оборудования для лазерной резки металла определяется высокой точностью, аккуратностью срезов и отсутствием необходимости дополнительно обрабатывать или усовершенствовать поверхность среза.

Оборудование для лазерной резки металла

Для выполнения таких технологических процессов обработки металлических листов используется специальное оборудование – лазерные станки.

В зависимости от особенностей принципов выполнения работы установки бывают таких видов:

  • Твердотельные станки для лазерной резки металла – активно применяются для корректной, быстрой и эффективной обработки изделий из алюминия и алюминиевых сплавов различных составов, медных листов и заготовок из латуни.

Установка укомплектована диодом и специальной формы стержнем. Такая деталь изготавливается из рубина, гранита или определенных видов стекла.

Принцип работы такого станка заключается в проекции заряда энергии на стержень для его перенаправления на поверхность, которую необходимо обработать.

Дополнительными компонентами, которые позволяют повысить эффективность работы установки, точность и мощность проведения процедуры нарезки элементов, являются зеркала и призма.

  • Волоконные приборы – основой генерации лазера является оптоволокно. Такие компоненты обеспечивают выполнение больших объемов производства деталей за достаточно короткое время с возможностью точно устанавливать необходимые размеры и параметры нарезки.
  • Газовые станки в качестве генератора используют гелий, азот или углекислый газ. Особенности применения таких компонентов позволяют просто и эффективно обрабатывать прочные и крепкие сплавы металлических листов.

Выбрать оптимальный вариант оборудования для получения желаемых результатов, точно и аккуратно созданных конкретных деталей просто с учетом типа металлического сплава.

Сферы применения лазерной резки металла

Использование технологий такой обработки элементов из различных сплавов и массовое производство деталей уместно и выгодно для таких сфер:

  • производство автомобилей, технических транспортных средств и разнообразных машин;
  • детали и оборудование для обслуживания и создания торговых павильонов – стеллажей, подставок, поддонов и других подобных деталей;
  • компоненты для производства корпусной мебели;
  • создание трафаретов, вывесок и надписей из металла;
  • комплектация и украшение кованых деталей;
  • производство элементов декора для помещений, фасадов домов, парковых зон, загородных домов и дач.

Использовать продукцию, изготовленную на станках лазерной резки, можно и в других сферах.

Положительные моменты применения технологии лазерной резки металла

Преимуществами нарезки изделий при помощи точно направленного лазера на специальном станке являются:

  • Точно направленный луч разделяет лист на части без механического воздействия на его поверхность – отсутствие какой-либо силы и нажима на металл мягких сплавов полностью исключает возможность его деформации, загибов или возникновения других дефектов по такой причине.
  • Универсальность применения – обрабатывать таким способом можно практически все виды сплавов на станках разных типов и мощности лазера.
  • Элементы, которые обрабатываются таким методом, не нагреваются, и их можно сразу отправлять на следующие этапы производства.
  • Автоматизация процессов работы станка и раскрой листа с использованием специального программного обеспечения позволяет экономить ресурс предприятия на оплату труда сотрудников и обеспечивает снижение объемов обрезков. Такой подход позволяет снизить стоимость готовых элементов благодаря оптимальным затратам на их изготовление.
  • Лазер точно по запрограммированному трафарету, быстро, без лишних манипуляций создает разрезы установленных параметров толщины, глубины, что позволяет выпускать серийную продукцию в оптимально короткие сроки.
  • Функциональность станков для лазерной резки позволяет наладить проведение большого количества работ – высверливание отверстий разного диаметра, глубины и сложности, гравировка поверхности разных товаров для надежного нанесения необходимых данных, фрезеровка и другие.
  • Во время обработки исключен риск облома, царапин или порчи заготовки благодаря минимальному контакту оператора установки с ней и отсутствию применения силы.
  • Простота использования станков – наличие программного обеспечения устройства позволяет автоматизировать процесс и наладить работу под контролем электронной системы, которая не допускает ошибок или неточностей в своей работе в отличие от работы человека.
  • Для производства серийных деталей можно загрузить готовый трафарет, по которому будут вырезаться элементы для гарантии точного соблюдения размеров и параметров продукции.
  • Разнообразие станков по мощности и габаритам позволяет устанавливать их в мастерских и цехах для достижения конкретных целей и создания необходимых деталей.

Минусы лазерных станков

Как любые другие механизмы и устройства, лазерные станки имеют недостатки:

  • Ограничение параметров листового материала, который можно качественно отработать без проблем. Толщина металла не должна превышать показатели в 4 сантиметра.
  • Технология достаточно затратная, что отображается на стоимости готовых товаров.
  • Проводить работы для создания внутренней резьбы или необходимых рельефов лазерными установками не получится.

Лазерная резка – это направление обработки листового металла для создания большого количества высокоточных и качественных деталей для промышленности и бытового применения.

Источник: https://o-remonte.com/lazernaya-rezka-metalla-osobennosti-p/

Лазерная резка металла — что это?

что такое лазерная резка металла

В современной промышленности применяется много автоматизированных способов обработки материалов, один из самых точных – лазерная резка металла. В основе лазерной технологической установки может быть твердотельный, газовый или волоконный лазер.

Метод резки лазером позволяет обрабатывать заготовки самой сложной формы, как плоские, так и объемные. Минимальная толщина металлических листов составляет 0,2 мм. Максимум разный для различных материалов: 30 мм для стали, для сплавов алюминия и нержавеющей стали — 25 мм, латунь – 12 мм; медь до 15 миллиметров. Чем ниже теплопроводность материала, тем легче его разрезать лазером.

Принцип действия устройства для лазерной резки

Процессом фасонной резки управляет компьютер. Именно он в соответствии с чертежом по заданной траектории направляет высокомощный лазер на металлическую заготовку, которая находится на координатном столе.

Под воздействием сфокусированного луча толщиной несколько микрометров, но обладающего большой энергией, металл в точках контакта плавится, а затем испаряется. Прилегающие к разрезу участки тоже нагреваются, но остаются неповрежденными.

При этом независимо от толщины материала, края разреза получаются идеально ровными, без заусенцев или наплывов. Поэтому дополнительная механическая обработка детали не требуется.

Испарения из рабочей зоны удаляют при помощи кислородной продувки (для черного металла) либо струей воздуха или азота (для заготовок из нержавеющей стали, алюминия и латуни).

Преимущества лазерной резки перед другими способами металлообработки

Резка лазером позволяет:

  • Повысить производительность труда на поточных линиях. Благодаря программному обеспечению можно быстро и гибко настраивать станки.
  • Сократить время и снизить себестоимость продукции исключением из технологического процесса операции рубки, фрезеровки, высечки или штамповки. Обработать изделие можно за один прием.
  • Снизить количество отходов, потому что компьютер при раскрое сам выбирает оптимальную, экономичную раскладку.
  • Обрабатывать особо хрупкие сплавы, а также легкодеформируемые, не жесткие изделия. Точечный нагрев на деформацию детали не влияет. Также изделие не нужно на столе закреплять, потому что прямого контакта инструмента и заготовки нет.
  • Изготавливать единичные изделия или использовать резку в мелкосерийном производстве, когда для производства небольшой партии не выгодно заказывать дорогостоящие пресс-формы.

Лазерная резка металла уверенно вытесняет другие виды металлообработки. Но хотя этот метод резки имеет множество преимуществ, из-за высокой стоимости оборудования он дороже традиционных. Применять его следует в тех случаях, когда решающими являются скорость и качество резки.

Источник: https://metalproces.ru/info/65-lazernaya-rezka-metalla

Лазерная резка металла: что это такое, плюсы и минусы

что такое лазерная резка металла

Лазерная резка в профессиональных кругах обозначена как Laser Beam Cutting или же сокращенно LBC по своей сути предусматривает нагревание того или иного участка изделия и его последующее разрушение посредством луча лазера.

Суть и технология лазерной резки

Луч лазера фокусируют на небольшом участке изделия и формируют на поверхности высокой плотности энергию, достаточной для обработки металла. Например, для быстрого плавления металла необходима плотность в 108 Ватт на 1 см. кв., и при данном показателе можно добиться таких свойств лазерной установки:

  1. Монохроматичность. В этом случае луч лазера обладает частотой постоянной и неизменной длиной волны, что позволяет добиться точности его фокусировки на определенном участке посредством простой системы линз.
  2. Направленность. Луч лазера можно сконцентрировать на значительно малом участке поверхности. Направленность лазера будет в сотни и тысячи раз точнее луча света.
  3. Когерентность – за счет существующего резонанса достигается высокий уровень мощности. Такие колебания дают волновые процессы, которые независимо от временных рамок будут протекать согласованно.

Независимо от площади и свойств обрабатываемой поверхности, свойства луча лазера и процесса обработки будут протекать одинаково. Достигается это за сет распространения тепла на поверхности обрабатываемого объекта.

В области, на которую направлен луч лазера идет нагрев изделия до уровня необходимой температуры плавления – за определенный промежуток времени металл еще больше нагревается и сам процесс плавления идет в его глубь.

При необходимости можно добиться уровня кипения металла и фиксация его испарения.

Все это дает возможность проводить резку металла по 2 специальным схемам:

  1. Процесса испарения.
  2. Процесса плавления.

Согласно методу испарения – его применяют при повышенных расхода электроэнергии. Но это не всегда экономически выгодно с позиции экономии, да и метода подходит лишь для обработки тонкого листа стали.

Потому чаще всего обработку проводят методом плавления и для снижения затрат энергии увеличивается сама скорость процесса резки металла, можно обрабатывать более толстый слой металла. Часто специалисты вдувают в сам процесс лазерной резки дополнительный состав газа – инертный или азотный, кислородный.

В частности, сам вспомогательный состав газа может выполнять следующие функции и задачи:

  1. Ускоряет процесс окисления стали и снижает ее отражающие свойства.
  2. Дает дополнительный процесс тепла за счет того, что струя лазера горит активней благодаря дополнительной поставке газа.
  3. Уносит благодаря более мощной струе из зоны сгорания продукты переработки и плавления, мелкие частики.

Раскрой металла лазером имеет массу положительных характеристик:

  1. Можно раскроить лист стали небольшой толщины – от 0.2 до 1 мм, да и более массивные листы, до 20 мм., а то и толщине до 50 мм.
  2. При процедуре резке лазером луч не контактирует механически с материалом и это позволит качественно обработать хрупкие и легко деформируемые поверхности.
  3. Для раскроя изделия – достаточно сделать файл с рисунком, а все остальное выполнит программа, компьютер, допуская минимум погрешностей не боле чем в в 0.1 мм.
  4. Резка тонкого листа проводится на большой скорости, это же касается и резки изделий из твердого металлического сплава.
  5. Нет необходимости готовить форму для литья или же закупать дорогие пресс – формы.
  6. Показатели скорости резки – высокие, как и сама производительность, расход материала – оптимальный с минимальными отходами, что в итоге ведет к снижению себестоимости производственного процесса.

Помимо этого, станок лазерной резки можно назвать универсальным – на нем можно производить практически любые детали, независимо от их сложности.

Если говорить о минусах резки лазером, то тут можно выделить такие моменты:

  1. Прежде всего, такая обработка более дорогая в сравнении с иными методами обработки.
  2. Да и сама толщина обработки листа металла ограничена.

Установка лазера для резки – что это?

На современном рынке лазерных установок представлены самые разнообразные модели, с разным уровнем мощности. Условно их можно поделить на такие типы:

  1. Газовый тип. Представлены с продольной/поперечной подачей смеси газа, который применяется в качестве рабочего тела. В таком агрегате смесь газа подается через спецтрубку под действием насоса. При этом электрический наряд для накачивания смеси газа обеспечивает ее атомы, которые пребывают в активном энергетическом состоянии. Самыми эффективными компонентами лазерной установки называют углекислотные щелевидные системы.
  2. Твердотопливная система. В такой системе обязательна лампа накачки – без нее нет возможности передавать необходимый уровень излучения. Рабочим источником тепла в этом случае выступает графитовый или же из неодимового стекла стержень. Такие системы работают в импульсном режиме, хотя при необходимости их настраивают на непрерывный режим работы.
  3. Газодинамические установки. Такие системы схожи с газовыми установками, но в них газовая смесь нагревается до температуры в 2-3 тысячи градусов. После ее пропускают через соло на уровне звуковой скорости и после охлаждается. Данный процесс достаточно сложный и дорогостоящий, потому в силу множества своих операций редко применяется на практике.

Комплектация каждого станка для лазерной резки металла лазером включает в себя такие составляющие:

  1. Комплекс специального образования и последующей передачи газовой смеси, излучения – сам сопло и система подачи направленного потока газа, поворотные зеркала и лазер, система постановки фокуса и оптических затворов.
  2. В систему входит и излучатель, с системой зеркального резонатора, активная среда и система накачки и модуляции.
  3. Автоматическая система управления, плюс специальный ряд подсобных систем, работающих в рамках параметра самого станка.
  4. Наличие системы координирующего устройства, которое необходимо для перемещения потоков волн в пространстве лазерного луча.

Источник: https://www.stroysmi.ru/metalloprokat/lazernaya-rezka-metalla-chto-eto-takoe-plyusy-i-minusy/

Описание и применение лазерной резки металла

Лазерная резка приобретает все большую популярность ввиду того, что позволяет автоматизировать весь цикл обработки и получить изделие высокого качества. Технология разделки металла с помощью лазера делает возможным производство высокоточных деталей в полностью автономном режиме, исключающем ручной труд.

Технология лазерной резки металла

Лазерная резка и гравировка относятся к немеханическим способам обработки, равно как и плазменный метод. Они используют термическое воздействие, при котором сильно нагревается линия разреза, а металл плавится в нужном месте. Традиционным механическим способом обработки, в основе которого лежит разница твердости режущего инструмента и заготовки, считается алмазная резка металла. Нагрева в месте разреза не происходит. Хорошей точности и чистоты реза этот способ не дает.

Режущим инструментом в лазерной технологии является луч, который испускается с помощью специальной установки. Он фокусируется на участке с крайне небольшой площадью (не более 0,5 мм), создавая сгусток энергии высокой плотности. В точке фокусировки металл начинает достаточно быстро разрушаться (испаряться, гореть, плавиться).

ЭТО ИНТЕРЕСНО:  Что такое дуговая сварка плавящимся электродом

Лазерному лучу помогают производить такой эффект следующие характеристики:

  1. Монохроматичность. Неизменность частоты и длины волны, позволяющая лучу при помощи простых оптических линз легко фиксироваться на любой поверхности.
  2. Направленность. Имея малый угол расходимости, луч хорошо концентрируется на нужном участке.
  3. Когерентность. Проходящие в луче волновые процессы колеблются согласованно и вызывают резонанс, который во много раз усиливает мощность излучения.

Дальнейшее воздействие вызывает испарение материала, т. к. температура в контактной зоне достигает точки кипения. Теплопроводность металла способствует перемещению пятна плавления вглубь разрезаемой заготовки.

Выделяют 2 механизма резки лазером: плавлением и испарением. Применение второго метода возможно только на тонком металле. К тому же большая мощность установки потребует соответствующих энергозатрат, что не всегда экономически оправданно.

Вариант резки плавлением получил гораздо более широкое распространение, т. к. затраты энергии намного ниже.

При способе обработки методом плавления используется вспомогательный газ (аргон, азот, гелий или воздух), вдуваемый в зону реза специальными установками.

Кислород, используемый в качестве вспомогательного газа, выполняет следующие важные задачи:

  • выдувает из области резки капли расплавленного металла и отходы горения, обеспечивая поступление газа в режущую зону;
  • активизирует окислительные процессы в металле, тем самым снижая его отражающие качества;
  • при поступлении кислорода металл горит интенсивнее, дополнительно выделяющаяся теплота увеличивает лазерное воздействие.

Алюминий

Лазерная резка алюминия обладает некоторыми особенностями, которые обуславливаются свойствами самого металла. Работать с алюминием сложнее, чем с другими материалами. Благодаря своим оптическим и теплофизическим характеристикам металл имеет высокую отражающую способность и поглощает лазерное излучение плохо.

https://www.youtube.com/watch?v=-0FA5s1U3jI

Для резки алюминия потребуется мощность лазерного излучения гораздо большая (в 2-3 раза), чем для разделки углеродистых сталей. Это необходимо из-за высоких коэффициентов теплопроводности, отражения излучения и температуры плавления образовавшихся тугоплавких оксидов. Приходится использовать для обработки металла оборудование, обладающее более мощной режущей способностью.

Рекомендуется разрезать металл на невысоких скоростях обработки, т. к. это позволит предотвратить образование повреждения поверхности и добиться лучшего качества работы. Резка заготовок с малыми толщинами должна производиться в импульсном режиме работы устройства, благодаря этому уменьшается область нагрева поверхности в зоне резания и снижается риск деформации детали.

С толстым металлом советуют работать в микроплазменном режиме. Плазма образуется под действием паров легко ионизируемых элементов (цинк, магний и др.), она нагревает металл до температуры плавления с минимальными энергетическими затратами.

Вспомогательным газом чаще является азот, он поступает в область резания под давлением более 10 атм. Плоскость реза имеет немного шероховатую и пористую структуру, на нижней кромке наблюдается небольшое количество легкоудаляющегося грата (излишков металла). С ростом толщины заготовки понижается качество реза. Процесс показан на видео:

Нержавейка

Самой сложной признается лазерная резка нержавейки. Этот материал обладает большой стойкостью к разрушению, поэтому другим видам обработки он плохо поддается. Часто только лазерный метод бывает единственно возможным способом резки листового материала, т. к. при высоких температурах алюминий окисляется, а на поверхности образуются холодные трещины. Крайне затруднительна и неэффективна бывает механическая резка металла.

Сложности обработки материала обусловлены следующими качествами нержавеющих сталей:

  • наличие в составе большого количества легирующих присадок способно привести к зашлаковыванию поверхности реза;
  • затрудняется подвод лазерного луча к режущей зоне из-за формирования тугоплавких оксидов, вследствие чего расход энергии увеличивается;
  • для сталей высокохромистых и хромоникелевых характерна низкая текучесть, что сильно осложняет процесс резания.

При таком способе резки нержавейки применяется хорошо очищенный азот, который поступает под давлением до 20 атм. Когда резке подвергаются толстые заготовки, пятно луча заглубляется в материал для обеспечения хорошего доступа газа. При этом входное отверстие будет иметь больший диаметр, и поступление азота в область расплава возрастает.

Медь

Лазерная резка меди сильно осложняется достаточно высокой теплопроводностью металла и большим коэффициентом теплоемкости, что накладывает некоторые ограничения на применяемое оборудование. Обработка этого металла лазером должна производиться на малых скоростях с наименьшим размером пятна контакта и при больших значениях мощности излучения.

Оптимальными для резания являются медные листы не более 0,5 см толщиной. Сложный технологический процесс не позволяет нормально работать с толстыми медными заготовками. Возможно только простое раскраивание. Резка будет экономически невыгодной из-за необходимости применения оборудования чрезмерно большой мощности.

Преимущества и недостатки

Резка с помощью лазера имеет ряд неоспоримых преимуществ при сопоставлении с другими видами обработки. Выделяют следующие положительные характеристики:

  • приемлемый диапазон обрабатываемых толщин: лазерная резка алюминия — 0,2-2 см, нержавейка — резка листов толщиной до 1,2 см, углеродистая сталь — 0,5-2 см, латунь и медь — 0,2-1,5 см;
  • ширина реза от 0,1 до 1 мм;
  • исключение непосредственного контакта режущего элемента с поверхностью обрабатываемой заготовки, что позволяет работать с хрупкими и ломкими материалами;
  • отсутствие потребности в дополнительной финишной обработке;
  • высокая производительность (особенно при сопоставлении с резкой металла кислородом);
  • простота и легкость управления оборудованием на производстве: чертеж изделия, выполненный в специальной графической программе, просто загружается в блок управления;
  • высокая скорость разделки тонколистового проката;
  • экономный расход материала за счет компактного расположения деталей на листе раскроя;
  • резка металла под углом и в различных направлениях;
  • изготовление изделий сложных форм;
  • экономически выгодное производство изделий малыми партиями, когда операции штамповки и литья нецелесообразны;
  • высокая точность разреза с ровными краями без наплывов и заусенцев, позволяющая передавать детали от места резки сразу на участок сварки металлов.

Надо отметить и отрицательные стороны резки лазером:

  • высокая стоимость;
  • низкая продуктивность при резке бронзы, алюминия, легированной стали и латуни;
  • невозможность разделывать заготовки любой толщины;
  • вследствие подкаливания материала в зоне пятна резки возможны трудности последовательного проведения лазерной резки и гибки металла.

Оборудование

Находят применение несколько вариантов оборудования:

  1. Твердотелое оборудование. Рабочим элементом является кристалл рубина (алюмоиттриевый гранат, неодимовое стекло). Угол подачи потока света на искусственный рубин будет иметь четкое значение. Установка относительно небольшой мощности применяется как для гравировки металла, так и для резки цветных металлов. Слесарное дело в небольшом цехе получит хорошее подспорье. Небольшие станки возможно использовать для работы своими руками.
  2. Газовая установка. В оборудовании для лазерной резки металла газ является активным элементом, который заряжается при прохождении через электрическое поле. Затем газы начинают выпускать монохроматическое световое излучение. Большую востребованность имеют щелевидные модели, использующие углекислый газ. Подобные установки для резки металла мощные и простые в работе, но при этом небольших размеров.
  3. Газодинамическая установка. На устройствах этого типа лазерная резка металла будет достаточно дорогой процедурой, т. к. оборудование мощное и сложное. Газ (чаще углекислый) разогревается до чрезвычайно высоких температур (2000-3000°C), затем при прохождении через узкое сопло он расширяется. При последующем охлаждении излучается энергия, которая идет на формирование луча. Качество получаемых изделий настолько хорошее, что их можно сразу направлять на гибочный участок.

Станок для лазерной резки

Все станки, на которых осуществляется лазерная резка и гравировка, содержат несколько необходимых компонентов:

  1. Излучатель. Порождает пучки лазерных лучей.
  2. Система перемещения лазерного излучения и система формирования луча. Перемещает лазерные пучки, формирует 1 большой луч и, пользуясь системой фокусировки, направляет в нужное место.
  3. Система образования и транспортировки газа. Готовит необходимый состав и нужное количество рабочего газа, а затем через сопло доставляет его к месту резки.
  4. Устройство координации. Перемещает в пространстве луч и обрабатываемый объект.
  5. Система автоматического управления. Проверяет и регулирует работу всего оборудования, командует координатным устройством, системой транспортировки и формирования луча и газа.

Лазерная резка алюминия производится исключительно на станках с ЧПУ, все настройки и операции происходят автоматически в соответствии с программным обеспечением. Это позволяет получить изделия лучшего качества, чем при разделке пилой, электродом или отрезным алмазным диском.

Предназначение лазерного оборудования

Технологические устройства для резки по металлу лазером характеризуются несколькими параметрами:

  • составом газовой струи и ее давлением;
  • типом обрабатываемого материала;
  • мощностью излучения и его интенсивностью.

Существуют специализированные станки для резки труб, а также для работ с мягкими и пластичными металлами. Технология лазерной резки приобретает все более широкое распространение, т. к. дает возможность существенно снизить трудоемкость технологического процесса и свести использование ручного труда к минимуму. Для изготовления всевозможных металлических деталей и декоративных элементов из листов материала разной толщины все чаще используется лазерная резка металла.

Источник: https://alsver.ru/rezka/lazernaya

Устройство и принцип работы станков для лазерной резки

Станки для лазерной резки применяются для бесконтактной обработки различных металлов с высокой точностью. Аналогов по уровню технологии, качеству резки или гравировки и удобству управления нет. Обрабатываемые заготовки после проведения работ не требуют доработок, стоимость их изготовления низкая.

Станок для резки металла

Устройство и принцип работы

Лазерный станок предназначен для гравировки и порезки металлических изделий. Конструктивно состоит из следующих узлов:

  • систем излучения, преобразования;
  • излучателя с резонаторами;
  • управляющей системы;
  • органов управления;
  • узла, перемещающего лазер над рабочей поверхностью.

Конструкция зависит от типов оборудования:

  • газовые — оснащаются системой накачки инертных газов (неон, гелий), стеклянной колбой с излучающей трубкой;
  • твердотельные, устанавливаются лампы накачки, импульсные лампы, рабочее тело (рубин) система зеркал (отражающие, полупрозрачные);
  • газодинамические — предусмотрено сопло для ускорения газов, системы охлаждения;

Плотность пучка составляет 100 МВт/см2. При облучении поверхности заготовки происходит её быстрый разогрев, плавление. За счёт теплопроводности луч способен проникать вглубь металла. В зоне нагрева при достижении температуры кипения происходит его испарение.

Виды лазерной резки

В зависимости от мощности луча, лазерные станки позволяют выполнять такие виды обработок:

Резать детали путём расплавления выгодно по следующим причинам:

  • ресурс лазера выше, чем при испарении;
  • меньшее потребление электроэнергии;
  • допускается резка заготовок различной толщины;
  • точная регулировка луча системой управления — фокусировка, угол наклона;
  • высокое качество торцов деталей после обработки;
  • при добавлении газов снижается вероятность образования окислов.

Метод испарения применим для небольшой толщины. Требует значительных энергозатрат, поэтому на практике его используют достаточно редко. Изготовление деталей становится экономически не выгодным.

Принципы выбора

Оборудование для лазерной резки металла выбирается по следующим критериям:

  • производительности, скорости обработки, позиционирования луча над рабочей поверхностью;
  • типу излучателя (металлического или керамического), срока его службы, надёжности, особенностей конструкции;
  • торговой марки, под которой был изготовлен станок;
  • гарантийному сроку от производителя;
  • виду материалов деталей, используемых в устройстве позиционирования лазера, особенно направляющих;
  • назначению, условиям эксплуатации, на которые рассчитан промышленный станок;
  • удобству и простоте управления;
  • возможностям расширения функциональности;
  • требованиям к помещению, где будет выполнена установка оборудования;
  • стоимости конкретной модели, комплектующих, расходных материалов.

Дизайн станка

Дизайн и компоновка оборудования для лазерной резки металла обеспечивают удобство в работе, а также производительность. Простота удаления стружки, доступное пространство для перемещения заготовки относительно лазера, эффективность охлаждения — вот основные параметры, зависящие от расположения конструктивных элементов.

Важно обращать внимание на следующие узлы:

  • подъёмный стол;
  • лазер;
  • систему охлаждения;
  • оптику.

Подъёмный стол

Станок для лазерной резки оснащён подъёмным столом, предназначенным для закрепления и перемещения заготовки относительно луча. Перемещение может быть линейным вдоль вертикальной оси координат. Он обладает различной грузоподъёмностью, площадью, способен перемещаться при помощи механического или электрического подъёмного привода.

Мощность лазера и охлаждение

Лазерный резак по металлу оснащается лазерами различной мощности, позволяющими выполнять различные задачи. Чем выше мощность, тем качественнее обработка, больше допустимая толщина заготовок, но и выше энергопотребление.

Для эффективной работы и установки необходимо обеспечивать качественное охлаждение трубки. От этого будет зависеть ресурс работы лазера. Обычно достаточно водяной системы с датчиком потока, позволяющим контролировать охлаждение.

Лазер для резки металла

Оптика

Устройство для лазерной резки предусматривает установку оптики, назначение которой фокусировать луч. Она может быть следующих видов:

  • длиннофокусной, применяемой для обработки толстых заготовок;
  • короткофокусной, используемой для гравировки или резки тонколистового металла.

Цены

Стоимость оборудования зависит от следующих факторов:

  • производителя;
  • функциональности;
  • типа лазера;
  • оптической системы;
  • площади рабочей поверхности;
  • системы охлаждения.

Как изготовить станок для лазерной резки своими руками

Создать своими руками станок для резки металла лазерным лучом можно только твердотельный, так как для него просто подобрать комплектующие, цены на них невысокие. Основными элементами для сборки являются сам лазер и система управления его работой.

Приобрести лазер можно в специализированных магазинах или снять с готовых изделий (лазерной указки, привода лазерных дисков). Для создания управляющей схемы потребуются следующие компоненты:

  • конденсаторы 100 пФ, 100 мкФ;
  • резисторы номиналом от 2 до 5 Ом;
  • плата для пайки;
  • фокусирующая оптика;
  • цилиндрический металлический корпус, подходит от светодиодного фонарика;
  • мультиметр.

Новичкам рекомендуется приобретать в магазинах радиоэлектроники готовую печатную плату с установленными элементами. Альтернативой является выбор готовой схемы, изготовления на её основе платы и самостоятельной пайки.

Также нужно заранее подготовить дополнительные для сборки компоненты:

  • корпус для радиоэлементов и лазера;
  • шаговые двигатели, платы управления ими;
  • регулятор напряжения излучателя;
  • резиновые ремни зубчатые, металлические шкивы под них;
  • крепёжные элементы;
  • выключатели кольцевого типа;
  • USB-контроллер для цифрового управления;
  • систему охлаждения;
  • металлические трубки (направляющие) и доски (для корпуса).

Пошаговый процесс изготовления:

  1. Разбирается корпус устройства-донора, из него демонтируется лазерная головка.
  2. Изготавливается прямоугольный каркас из деревянных планок.
  3. Внутри корпуса монтируются поперечные направляющие, а на них продольные, к которым крепится станина.
  4. Подсоединяются к перемещаемой планке шкивы, устанавливаются двигатели, одеваются ремни.
  5. На перемещаемую станину закрепляется лазерная головка.
  6. Монтируется система охлаждения.
  7. К лазеру подключается плата управления.
  8. Выводится проводка от управляющей платы на переднюю панель корпуса, подключаются системы контроля и управления.
  9. Подключается USB-контроллер, на ПК согласуется с программным обеспечением, выполняются настройки.
  10. Проверяется работа оборудования в основных режимах.

Плата для пайки

Эксплуатация

Особенности эксплуатации станков для лазерной резки по металлу:

  • необходимо выполнить заземление оборудования;
  • при работе включить водяное охлаждение;
  • для повышения точности обработки металлических поверхностей, необходимо выполнять юстировку оптики;
  • запрещено резать детали, не соответствующие заявленным производителем требованиям по эксплуатации;
  • для стабильной работы электроники нужно обеспечить качественное электропитание;
  • важно регулярно проводить техосмотры, заменять изношенные детали, расходные материалы;
  • направляющие нуждаются в качественной периодической смазке;
  • поддерживать оборудование в чистоте.
ЭТО ИНТЕРЕСНО:  Как правильно сваривать металл инвертором для новичков

Станок позволяет обрабатывать металлические поверхности лазерным лучом, обладающим высокой энергией, когерентностью, постоянной длиной волны. При попадании на поверхность заготовки происходит её нагрев до температуры плавления. В результате такого воздействия одна часть металла испаряется, а другая — переходит в расплавленную металлическую фазу.
Простой и доступный лазер для резки металла

Источник: https://metalloy.ru/stanki/dlya-rezki/lazernoj

Технология лазерной резки металла – оборудование, особенности, видео

Лазерная резка, или LBC (Laser Beam Cutting), как она обозначается во всем мире, – это процесс, при котором материал в зоне реза нагревается, а затем разрушается при помощи лазера.

Промышленная резка металла с помощью лазера

Сущность лазерной резки металла

Лазерная резка металла, как понятно из ее названия, выполняется при помощи луча лазера, получаемого при помощи специальной установки. Свойства такого луча позволяют фокусировать его на поверхности небольшой площади, создавая при этом энергию, характеризующуюся высокой плотностью. Это приводит к тому, что любой материал начинает активно разрушаться (плавиться, сгорать, испаряться и т.д.).

Станок лазерной резки металла, к примеру, позволяет концентрировать на поверхности обрабатываемого изделия энергию, плотность которой составляет 108 Ватт на один квадратный сантиметр. Для того чтобы понять, как удается добиться такого эффекта, необходимо разобраться, какими свойствами обладает лазерный луч:

  • Лазерный луч, в отличие от световых волн, характеризуется постоянством длины и частоты волны (монохроматичность), что и позволяет легко фокусировать его на любой поверхности при помощи обычных оптических линз.
  • Исключительно высокая направленность лазерного луча и небольшой угол его расходимости. Благодаря такому свойству на оборудовании для лазерной резки можно получить луч, отличающийся высокой фокусировкой.
  • Лазерный луч обладает еще одним очень важным свойством – когерентностью. Это значит, что множество волновых процессов, протекающих в таком луче, полностью согласованы и находятся в резонансе друг с другом, что в разы увеличивает суммарную мощность излучения.

Процессы, происходящие при резке металла с использованием лазера, хорошо заметны на приведенных в статье видео. При воздействии луча на поверхность металла происходит быстрое нагревание и последующее расплавление подвергаемой обработке площади.

Быстрому распространению зоны плавления вглубь обрабатываемого изделия способствуют несколько факторов, в том числе и теплопроводность самого материала. Дальнейшее воздействие лазерного луча на поверхность изделия приводит к тому, что температура в зоне контакта доходит до точки кипения и обрабатываемый материал начинает испаряться.

Процесс лазерной резки в схематичной форме

Лазерную резку металла может выполняться двумя способами:

  • плавлением металла;
  • испарением обрабатываемого металла.

Для того чтобы выполнить резку металла методом испарения, требуется большая мощность оборудования и, как следствие, значительные энергозатраты, что не всегда целесообразно с экономической точки зрения. Ограничивают использование такого метода и строгие требования к толщине обрабатываемых изделий. Именно поэтому данный метод используют только для резки тонкостенных деталей.

Значительно большее распространение получила лазерная резка металла методом плавления. В последнее время лазерную резку методом плавления все чаще проводят с использованием газов (кислород, азот, воздух, инертные газы), которые с помощью специальных установок вдувают в зону реза (видео этого процесса можно легко найти в Сети).

Такая технология позволяет снизить энергозатраты, повысить скорость работы, использовать оборудование небольшой мощности для резки металла большой толщины. Конечно, это нельзя считать лазерной резкой в чистом виде, правильнее будет называть его газолазерной технологией.

Лазерная резка стали 10мм

Использование кислорода в качестве вспомогательного газа при выполнении лазерной резки позволяет одновременно решить такие важные задачи, как:

  • активизация процесса окисления металла (это позволяет снизить его отражающую способность);
  • повышение тепловой мощности в зоне реза (поскольку металл в среде кислорода горит более активно);
  • выдувание из зоны реза мелких частиц металла и продуктов сгорания кислородом, подаваемым под определенным давлением (это облегчает приток газа в зону обработки).

Преимущества и недостатки лазерной резки

Лазерная резка металлических изделий имеет целый ряд весомых преимуществ по сравнению с другими способами резки. Из многочисленных достоинств данной технологии стоит обязательно отметить следующие.

  • Диапазон толщины изделий, которые можно успешно подвергать резке, достаточно широк: сталь – от 0,2 до 20 мм, медь и латунь – от 0,2 до 15 мм, сплавы на основе алюминия – от 0,2 до 20 мм, нержавеющая сталь – до 50 мм.
  • При использовании лазерных аппаратов исключается необходимость механического контакта с обрабатываемой деталью. Это позволяет обрабатывать таким методом резки легко деформирующиеся и хрупкие детали, не переживая за то, что они будут повреждены.
  • Получить при помощи лазерной резки изделие требуемой конфигурации просто, для этого достаточно загрузить в блок управления лазерного аппарата чертеж, выполненный в специальной программе. Все остальное с минимальной степенью погрешности (точность до 0,1 мм) выполнит оборудование, оснащенное компьютерной системой управления.
  • Аппараты для выполнения лазерной резки способны с большой скоростью обрабатывать тонкие листы из стали, а также изделия из твердых сплавов.
  • Лазерная резка металла способна полностью заменить дорогостоящие технологические операции литья и штамповки, что целесообразно в тех случаях, когда необходимо изготовить небольшие партии продукции.
  • Можно значительно снизить себестоимость продукции, что обеспечивается за счет более высокой скорости и производительности процесса резки, снижения объема отходов, отсутствия необходимости в дальнейшей механической обработке.

Наряду с высокой мощностью устройства для лазерной резки обладают исключительной универсальностью, что дает возможность решать с их помощью задачи любой степени сложности. В то же время для лазерной резки металла характерны и некоторые недостатки.

  • Из-за высокой мощности и значительного энергопотребления оборудования для лазерной резки себестоимость изделий, изготовленных с его применением, выше, чем при их производстве методом штамповки. Однако это можно отнести лишь к тем ситуациям, когда в себестоимость штампованной детали не включена стоимость изготовления технологической оснастки.
  • Существуют определенные ограничения по толщине детали, подвергаемой резке.

Виды оборудования для лазерной резки

Оборудование для лазерной резки металла делится на три основных типа.

Газовые установки для лазерной резки

Газы в таких установках, использующиеся в качестве рабочего тела, могут прокачиваться по продольной или поперечной схеме.

Принцип работы таких лазеров заключается в возбуждении атомов газа под действием электрического разряда, вследствие чего частицы начинают излучать монохроматический свет. Большое распространение в современной промышленности нашли щелевидные установки, работающие на углекислом газе.

Они достаточно компактные, при этом мощные и отличаются простотой в эксплуатации (в Интернете достаточно много видео, на которых показана работа таких установок).

Принцип действия газового лазера

Установки твердотельного типа

Конструкция такого оборудования состоит из двух основных элементов: лампы накачки и рабочего тела, в качестве которого чаще всего используется стержень из искусственного рубина. В состав последнего также включен неодим иттриевого граната. Лампа накачки в таких аппаратах необходима для того, чтобы передать на рабочее тело требуемое излучение. Чаще всего такие установки для лазерной резки работают в импульсном режиме, но есть и модели, функционирующие непрерывно.

Принцип действия рубинового лазера

Газодинамическое оборудование

В газодинамических установках рабочий газ предварительно нагревается до 2–3 тысяч градусов, затем на высокой скорости (выше скорости звука) пропускается через специальное сопло, а после этого охлаждается. Такое оборудование является очень дорогостоящим, как и сам процесс формирования лазерного луча, поэтому его использование очень ограничено.

Если посмотреть видео работы лазерной установки, то очень сложно определить, к какой группе она относится. Для этого необходимо получить представление об устройстве такого оборудования.

Любое оборудование для выполнения лазерной резки, к какой бы группе оно ни принадлежало, содержит следующие элементы:

  • систему, отвечающую за передачу и образование газа и излучения (в состав такой системы входят сопло, устройство для подачи газа, юстировочный лазер, поворотные зеркала, оптические элементы и др.);
  • излучатель, оснащенный зеркалами резонатора, содержащий активную среду, устройства для накачки и обеспечения модуляции, если она необходима;
  • систему управления всеми параметрами работы оборудования и осуществления контроля за их соблюдением;
  • узел, обеспечивающий перемещение обрабатываемого изделия и лазерного луча.

Источник: http://met-all.org/obrabotka/rezka/tehnologiya-lazernoj-rezki-metalla.html

Что такое лазерная резка: технология резки, достоинства, недостатки

Лазерная резка металла представляет собой технологию, применяемую для нарезания металлических листов, а также других изделий, что достигается благодаря использованию луча лазера.

Неоспоримыми ее преимуществами являются: абсолютно ровные места срезов и возможность вырезания самых замысловатых фигур, что делает возможным использование лазерной резки металла при создании высокоточных деталей и различных, даже самых сложных, конструкций.

Данное научное решение сейчас активно применяют строительные компании, производители мебели и рекламной продукции, а также оно используется для производства табличек и элементов декора.

Процесс [ править | править код ]

Для лазерной резки металлов применяют технологические установки на основе твердотельных, волоконных лазеров и газовых CO2-лазеров, работающих как в непрерывном, так и в импульсно-периодическом режимах излучения. Промышленное применение газо-лазерной резки с каждым годом увеличивается, но этот процесс не может полностью заменить традиционные способы разделения металлов.

В сопоставлении со многими из применяемых на производстве установок стоимость лазерного оборудования для резки ещё достаточно высока, хотя в последнее время наметилась тенденция к её снижению.

В связи с этим процесс лазерной резки становится эффективным только при условии обоснованного и разумного выбора области применения, когда использование традиционных способов трудоемко или вообще невозможно.

Преимущества [ править | править код ]

Лазерная резка осуществляется путём сквозного прожига листовых металлов лучом лазера. Такая технология имеет ряд очевидных преимуществ перед многими другими способами раскроя:

  • Отсутствие механического контакта позволяет обрабатывать хрупкие и легко деформирующиеся материалы;
  • Обработке поддаются материалы из твёрдых сплавов;
  • Возможна высокоскоростная резка тонколистовой стали;
  • При выпуске небольших партий продукции целесообразнее провести лазерный раскрой материала, чем изготавливать для этого дорогостоящие пресс-формы или формы для литья;
  • Для автоматического раскроя материала достаточно подготовить файл рисунка в любой чертёжной программе и перенести файл на компьютер установки, которая выдержит погрешности в очень малых величинах.

Сферы использования лазерной обработки

В настоящее время использование достаточно высокоточного оборудования для лазерной резки нужно для того, чтобы создавать следующие конструкции:

  • создание разнообразных деталей для машиностроительной техники;
  • создание всевозможных полок, стеллажей и прочих конструкций, применяющихся в торговой промышленности;
  • некоторые элементы дымохода, печей и котлов создаются при помощи лазерной резки;
  • кованные ограждения и некоторые детали для ворот и дверей;

Если принять во внимание все преимущества лазерной обработки металлов, становится понятно, почему многие предприятия переходят именно на этот способ работы с тонким листовым металлопрокатом.

Обрабатываемые материалы [ править | править код ]

Для лазерной резки подходит любая сталь любого состояния, алюминий и его сплавы, другие цветные металлы. Обычно применяют листы из таких металлов:

  • Сталь от 0,2 мм до 30 мм
  • Нержавеющая сталь от 0,2 мм до 40 мм
  • Алюминиевые сплавы от 0,2 мм до 25 мм
  • Латунь от 0,2 мм до 12,5 мм
  • Медь от 0,2 мм до 16 мм

Для разных материалов применяют различные типы лазеров.

Лучше всего обрабатываются металлы с низкой теплопроводностью, так как в них энергия лазера концентрируется в меньшем объеме металла, и наоборот, при лазерной резке металлов с высокой теплопроводностью может образоваться грат.

Также могут обрабатываться многие неметаллы — например, дерево.

До появления лазерной резки

Ни одно предприятие, связанное с изготовлением конструкций и изделий из металла, не может обойтись без оборудования для резки деталей из листового металлопроката. Технология газопламенной резки широко применялась ещё в первой половине прошлого века.

При этом способе зона реза нагревается и выплавляется газовой смесью на основе пропана и кислорода. В целом это оборудование неплохо зарекомендовало себя и активно используется по сей день.

Но подобный способ резки имеет и свои ограничения в применении:

  • Невозможность резки высоколигированных, нержавеющих сталей, сплавов из цветных металлов;
  • Температурные деформации деталей из листовой стали толщиной менее 5 мм;
  • Невысокая скорость резания;
  • Значительная ширина реза.

Энергопотребление [ править | править код ]

Эффективность промышленных лазеров может варьироваться от 5% до 15%. Энергопотребление и эффективность будут зависеть от выходной мощности лазера, его рабочих параметров и того, насколько хорошо лазер подходит для конкретной работы.

При определении целесообразности использования того или иного типа лазера учитывается как стоимость лазера в совокупности с обслуживающим его оборудованием, так и стоимость содержания и обслуживания лазера.

В 10-х годах XXI столетия эксплуатационные издержки оптоволоконного лазера составляют около половины от эксплуатационных издержек углекислотного лазера.

Величина необходимой затрачиваемой мощности, необходимой для резки, зависит от типа материала, его толщины, среды обработки, скорости обработки.

Раскрой листового и другого профильного проката является одной из важнейших операций при создании металлоконструкций.

Именно эта операция во много определяет качество продукции и ее стоимость. За все время придумано и внедрено в эксплуатацию множество технологий, применяемых при раскрое листового и другого профиля.

Суть раскроя металла

Раскрой металла, вне зависимости от его формы – это заготовительная операция. Именно на стадии ее выполнения обретают черты будущие детали металлоконструкции. На машиностроительных предприятиях, да и в производственных комплексах других отраслей, существуют целые заготовительные подразделения, оснащенные самым разным оборудованием, предназначенным для формирования заготовок, а то и готовых деталей. Все зависит от применяемого оборудования и инструмента.

Источник: https://instanko.ru/drugoe/lazernyj-raskroj.html

Технология лазерной резки железа: разновидности, оборудование для процесса, преимущества и недостатки

Среди большого количества технологий по обработке железа лазерная резка выделяется экономичностью и производительностью. Эта технология позволяет не только сверхточно производить изделия со сложным геометрическим контуром, но и обеспечивает высокую скорость изготовления этих изделий.

При применении лазерной резки вальцуемый металл подвергается влиянию эффектов отражения и поглощения излучения от лазера. Изменение габаритов и формы элементов при лазерной обработке достигается благодаря воздействию двух результатов излучения: плавления и испарения. Описание процесса заключается в следующем:

  • Лазерный луч оказывает воздействие на железо в определенной точке.
  • Сначала элементы оплавляются до оптимальной температуры, потом начинается процесс плавки металла.
  • В фазе плавления возникают углубления.
  • Влияние энергии излучения лазера приводит ко 2 фазе процесса — кипит и испаряется металлическое вещество.
ЭТО ИНТЕРЕСНО:  Что такое сварочный трансформатор

Однако, последний механизм требует высоких энергозатрат и осуществим лишь для достаточно тонкого металла. Поэтому на практике резку выполняют плавлением.

При этом в целях существенного сокращения затрат энергии, повышения толщины обрабатываемого металла и скорости разрезания применяется вспомогательный газ, вдуваемый в зону реза для удаления продуктов разрушения металла.

Обычно в качестве вспомогательного газа используется кислород, воздух, инертный газ или азот. Такая резка называется газолазерной.

Разновидности лазерных приборов

Лазер состоит из элементов:

  • Особенного ключа энергии (системы накачки).
  • Рабочего объекта, обладающего возможностью вынужденного излучения.
  • Оптического резонатора (набор специализированных зеркал).

Принадлежность обработки к той или иной вариации определяется по методу применяемого лазера и его мощи. Сейчас имеется следующее классифицирование лазеров:

  1. Твердотельные (мощь не более 7 квт).
  2. Газовые (мощь до 22 квт).
  3. Газодинамические (мощь от 110 квт).

В производственных целях большей известностью пользуется обработка железа с твердотельным прибором. Светоизлучение может подаваться в импульсном или сплошном режиме. В качестве трудового тела применяется рубин, стекло с добавкой неодима или CaF2 (флюорит кальция). Главным достоинством твердотельных лазеров считается способность создания мощного импульса энергии за несколько секунд.

Газовые лазеры используются для обработки железа в технологических и научных целях. Активным катализатором выступает смесь газообразного азота, углекислого газа и гелия, элементы которых активизируются электрическим разрядом и дают лазерному лучу монохромность и направленность.

Огромной мощностью отличаются газодинамические устройства. Рабочее тело — углекислый газ. Сначала газ прогревается до самой высокой температуры, потом он пропускается через небольшой канал, где случается расширение и последующее охлаждение углекислого газа. В результате этой процедуры выделяется энергия, применяемая для лазерной обработки железа.

Газодинамические устройства можно применять для обработки железа с любой поверхностью. Благодаря небольшому расходу лучевой энергии, их можно разместить на расстояние от обрабатываемой части и при этом сберечь качество резки железа.

Лазерные устройства для резки железа состоят из элементов:

  • Специализированного излучателя (твердотельный или газовый прибор). Должен обладать нужными энергетическими и оптическими показателями.
  • Система формирования лучей и газа. Отвечает за подачу луча от цели излучения к детали, которая обрабатывается, и изменение показателей поступающего к точке рабочего газа.
  • Устройство передвижения (координации) как самого железа, так и воздействующего на него лазерного луча. А также включает в себя электроисполнительный механизм, привод и мотор.
  • АСУ (автоматизированная система управления). Регулирует лазерный луч и управляет координатным механизмом и системой транспортирования и формирования луча и газа. Снабжена разнообразными датчиками и подсистемами.

Современный прибор резки железа способен исполнять любые трудные задачи, даже художественную резку. Их изготовлением занимаются как российские фирмы («Технолазер»), так и иностранные предприятия (немецкая фирма «Trumpf»).

Лазерная резка тонкого железа

Промышленным изготовителям удобнее применять листы металла для нарезки, чем необработанные части большой толщины. При этом можно экономить электроэнергию и применять методы резки листового железа с большей мощностью.

Методы нарезки железа, лист которого подготовлен к обработке, — это кислородная нарезка (выжигание), резка группой газов (аргон, азот) и сжатым воздухом. Среди достоинств лазерной нарезки листового железа перед прочими видами обработки возможно выделить:

  • Большую точность отдачи и нарезки лазерного луча.
  • Возникает меньше пыли на плоскости детали.
  • Маленькая вероятность нанесения повреждений листу железа.
  • Понижение энергетических затрат.
  • Формирование объемных простых конструкций с высокий скоростью и наименьшей площадью отделываемого материала.

Благодаря своим плюсам и применению точного передового оборудования, резка железа используется для создания:

  • Частей машиностроительной техники.
  • Декоративных подставок, полок, стеллажей и оснащения для торговой промышленности.
  • Составляющих котлов, емкостей, дымоходов и печей.
  • Звеньев дверей и ворот, кованных ограждений.
  • Личного дизайна шкафов и корпусов.
  • Своеобразных вывесок, букв и трафаретов.

Использование резки имеет массу преимуществ перед иными видами отделки металла. Потому все больше предприятий употребляют в своем производстве именно лазерную обработку железа.

Всемирная станочная индустрия идет в ногу со временем и дает своим потребителям всевозможное электрооборудование для резки железа. Многокоординатные аппараты призваны сменять громкие и низко плодотворные механические резаки.

Энергия лазера зависит от специфичности производства и финансового обоснования избранного агрегата. Новейшее поколение прецессионных разделывающих станков с ЧПУ разрешают проводить отделку материалов с верностью до 0,005 мм.

Метраж обработки отдельных моделей лазерных установок достигает многих квадратных метров.

Огромным достоинством считается минимизирование человеческого фактора, содержащаяся в высокой автоматизации промышленного процесса. Геометрия компонентов задается в макропрограммный блок, исполняющий управление лазером и трудовым столом с болванкой. Системы настройки фокуса машинально выбирают приемлемое расстояние для действенного резания.

Специфические теплообменники регулируют температуру лазерного агрегата, выдавая оператору контрольные сведения настоящего состояния инструмента.

Лазерный механизм оснащается клапанными приспособлениями для подключения газобаллонного снабжения, чтобы снабдить подачу запасных газов в рабочую часть. Система дымоулавливания призвана улучшить расходы на вытяжную вытяжку, включая её прямо в момент обработки.

Зона обработки полностью экранируется предохранительным кожухом для защищенности обслуживающего персонала.

Резка листового железа на современном оборудовании преобразуется в легкий процесс задания числовых характеристик и получения на выходе готового компонента. Продуктивность оборудования впрямую зависит от характеристик станочного комплекса и квалификации оператора, формирующего программный код. Методика резки железа пропорционально вписывается в концепцию роботизированного изготовления, призванного полностью избавить человека от тяжелого труда.

Изготовители предлагают разные типы лазерных станков:

  1. Многоцелевые.
  2. Специальные.

Стоимость первых больше, но они дают возможность производить некоторое количество операций и выпускать детали более трудной формы. Немалое количество рыночных услуг дает возможность выбора для заинтересованных покупателей.

Профессионалы машиностроительных предприятий понимают возможности использования предоставленной технологии для изготовления точных деталей с превосходной шероховатостью. Область использования обширна: от обычного раскроя листового металлопроката до приобретения сложных кузовных деталей автомашин.

Видимые плюсы нарезки железа сводятся к нескольким аспектам:

  • Высокое качество отделанной поверхности.
  • Бережливость материала.
  • Умение работы с непрочными материалами и мелкими заготовками.
  • Вероятность получения компонентов сложной конфигурации.

Среди минусов:

  • Высокая цена оснащения.
  • И расходных материалов.

Нарезка железа и цветных металлов пользуется огромным рыночным спросом. Лазерные технологии интенсивно применяются в декоративном творчестве при создании дизайнерских украшений и уникальных сувениров.

Решение об использовании обработки должно приниматься с учетом расчета окупаемости оснащения и величине рабочих расходов. В настоящее время подобные установки могут себе разрешить в основном большие предприятия с немаленьким производственным циклом. С раскручиванием технологии будут уменьшаться стоимость станков и величина употребляемой энергии, поэтому в будущем лазерные агрегаты вытеснят своих конкурентов.

Преимущества и недостатки технологии

Нарезка железных изделий имеет множество значимых преимуществ по сравнению с иными способами резки. Из многочисленных достоинств настоящей технологии стоит в обязательном порядке отметить следующие:

  1. Интервал толщины изделий, которые можно успешно подвергать гравировке, довольно широкий: сталь — от 0,2 до 22 мм, медь и латунь — от 0,3 до 16 мм, сплавы на базе алюминия — от 0,3 до 22 мм, нержавеющая сталь — до 55 мм.
  2. При применении лазерных аппаратов исключается надобность механического контакта с обрабатываемой составной частью. Это позволяет производить, таким образом, резки просто деформирующиеся и хрупкие детали, не волнуясь за то, что они будут испорчены.
  3. Получить с помощью нарезки продукт требуемой конфигурации просто для этого довольно загрузить в блок регулирования лазерного агрегата чертеж, сделанный в специальной программе. Все остальное с наименьшей степенью погрешности (достоверность до 0,2 мм) осуществит оборудование, оснащенное компьютерной системой управления.
  4. Агрегаты для выполнения нарезки могут с большой скоростью обрабатывать нетолстые листы из стали, а также фабрикаты из твердых сплавов.

Лазерная обработка способна полностью заменить дорогостоящие научно-технические операции литья и штамповки, что уместно в тех случаях, когда нужно изготовить маленькие партии продукции. Можно существенно снизить первоначальную стоимость продукции, что достигается за счет более высокой скорости и выработки процесса обработки, снижения объема остатков, отсутствия потребности в последующей механической обработке.

Наряду с высокой мощностью, приборы для лазерной обработки имеют необыкновенную универсальность, что дает возможность вычислять с их помощью задачи любого уровня сложности. В то же время для лазерной обработки характерны и определенные недостатки.

Из-за высокой силы и значительного энергопотребления оснащения для лазерной резки, первоначальная стоимость изделий, изготовленных с его использованием, выше, чем при их производстве способом штамповки. Однако это можно причислить только к тем ситуациям, когда в себестоимость штампованного элемента не включена цена производства технологической оснастки.

Источник: https://tokar.guru/stanki-i-oborudovanie/dlya-raboty-s-metallom/tehnologiya-lazernoy-rezki-metalla.html

Технология лазерной резки. Свет режет металл — как это вообще возможно?

Мы не удивляемся, когда Оби‑Ван Кеноби из «Звездных войн» прорезает толстую стальную дверь лазерным мечом. Ну прорезает и прорезает — это ведь фантастика, там всякое бывает.

Но вот когда выясняется, что корпуса самых обычных приборов, окружающих нас дома и на работе, вырезаны таким же лазером, хоть и менее пафосным — вот тут‑то многие и ловят столбняк.

Но это не «технология из будущего», не мечты фантастов и не прогнозы футурологов.

Эта технология работает по факту уже около пятидесяти лет. То есть она старше многих людей, которые до сих пор считают ее фантастикой.

Однако человек — существо любопытное. Нам мало знать, что лазерная резка в принципе реальна — нам интересно понять, как это происходит.

  • Как луч света, пусть и мощный, разрезает металл?
  • И даже если это в принципе возможно — почему бы не порадоваться этому и не взяться за более привычные инструменты? Ведь резать лазером наверняка дорого и сложно?

Здесь мы ответим на эти вопросы.

Сначала по поводу того, как луч неосязаемого света может разрезать прочный металл.

Свет несет тепло

Представьте. Вы лежите на пляже, с закрытыми глазами, волны‑чайки‑всё такое, но волны‑чайки нас сейчас не интересуют, а интересует нас солнышко. Греет? Поверхность кожи прямо нагрета. А в тени была бы прохладной. Кожу нагревает именно свет.

Дальше — дело техники. Свет лазерного луча так же нагревает металл. Так же, но намного сильнее, потому что лазерный луч сконцентрирован на нагреваемой поверхности, а излучатель расположен совсем рядом с ней.

Что происходит дальше? Температура металла в точке, на которую направлен луч, подскакивает выше 1000 градусов Цельсия. Конкретная температура зависит от вида металла — у них ведь разная температура плавления, и это учтено в расчетах. В соответствии с ней выбирается мощность луча и скорость его движения по листу. Всё рассчитано так, чтобы уверенно плавить металл, но не обугливать кромки и не тратить энергию впустую, светя в уже расплавленное место лишние миллисекунды.

И вот на поверхности листа образовалась маленькая ванночка из расплавленного металла. При этом, что ценно, остальная часть листа просто не успела толком на это среагировать. Металл отлично проводит тепло, да — но здесь подсвеченная область плавится так быстро, что окружающий металл не успевает расплавиться или хотя бы просто деформироваться.

Струя газа выдувает расплав

Маленький нюанс: лазер — не единственная сила, которая участвует в лазерной резке. Вторая сила тандема — струя газа. Струя газа под давлением направляется в ту же точку, что и луч. И выдувает расплавленный металл из получившегося отверстия вниз.

Вдобавок Вернитесь мысленно на пляж с греющим солнышком и представьте легкий порыв ветра, налетевший с моря и охладивший кожу. Так вот — вдобавок поток воздуха охлаждает грани отверстий. А это нам на руку, потому что окружающий металл не должен перегреться и деформироваться.

И это, кстати, всё еще не всё. Параллельно с этим разные газы при лазерной резке делают разные виды чудес, которые делают резку более мощной и быстрой — или наоборот, более аккуратной. Это очень интересная тема, но мы о ней уже писали. Не будем повторяться — а если вы не читали, то вот, полюбопытствуйте: «Газ для лазерной резки металла».

Луч идет дальше, превращая точечное отверстие в контур любой формы

Вот и всё, собственно. Отверстие в металле готово. А луч движется дальше со скоростью, доходящей в некоторых случаях до нескольких метров в минуту, по заданным в программе резки координатам. Когда надо — гаснет и загорается снова в нужный момент, обводя внутри заготовки технологические окна.

И за ним остается четкий разрез, задуманный вашим конструктором — или нашим конструктором, выполняющим ваши требования, если у вас, к примеру, нет своего конструкторского отдела.

Вот так лазер режет металл. Окей, но теперь у вас есть второй вопрос — даже если всё это возможно, разве не будет проще использовать для раскроя металла более старые способы типа механической резки, рубки, координатной пробивки? Разве не будет всё это дешевле лазера?

  1. Это не так дорого, как может показаться человеку, которого впечатлило изящество этой технологии. Производственные компании, которым нужны детали для их оборудования, абсолютно спокойно оплачивают лазерную резку и ничуть не беднеют на этом.
  2. Но да — если вам требуется стандартный одноюнитовый корпус в 19-дюймовую стойку с набором стандартных технологических окон и вам в принципе безразлично качество его выполнения — то стандартное изделие, выполненное на координатно‑пробивном станке, будет дешевле. Там, где лазер вычерчивает контур, координатник, заряженный пуансоном нужной формы, делает одно движение — ррраз! — и отверстие готово. Края этого отверстия, конечно, будут ну, так себе. Но мы ведь условились с самого начала, что вас не интересует качество.
  3. Совсем другая история начинается, когда в корпусе появляются нестандартные отверстия. Нужные для конкретно того уникального оборудования, которое разработала ваша компания. Или вообще сам корпус имеет нестандартные размеры. Если вы точно знаете, что будете производить по тысяче таких корпусов в месяц и они будут расходиться как горячие пирожки без всяких дополнений и изменений — окей, вы изготавливаете специальные формы рубки‑штамповки под ваше уникальное изделие. И поехали — ррраз, ррраз, ррраз — станок штампует ваши детали. По удару на деталь, максимум по два. Дорого запускать в производство такой штамп, но если производство массовое — это окупится.
  4. Такое возможно, такое делается. Но бывает и иначе. Например, когда заказчик точно знает, что его приборов нужно десять штук в месяц, не больше. Ниша узкая. И что, запускать ради этого производство штампа? Да прибор будет стоить, будто он из золота.
  5. Или так — ниша вполне себе широкая, но пока непонятно, «выстрелит» ли изделие в нынешнем виде. Возможно, что‑то придется менять, допиливать. А штамп это штамп, его не допилишь, только переделывать.
  6. Или так — и ниша широкая, и изделие проверенное. Но работа тонкая — отверстия не пробиваются, как надо. Приходится допиливать вручную, тратить время живых специалистов. Надо прорезать, чтобы всё было аккуратно сразу.

И вот во всех трех этих случаях лазерная резка оказывается технологией первого выбора. И логика заказчиков в этих условиях звучит не как «лазер дорогой, но приходится использовать его», а как «лазер — самый дешевый вариант из реально имеющихся в наличии». Хотя если не рассматривать эту картину серьезно, а просто посмотреть на цены резки и рубки — да, лазер вроде как дороже.

Поговорим предметно?

Но это всё, в сущности, общие слова. «Дороже», «дешевле». Для разных заказов в разных сферах эти слова значат очень разные вещи. В общих принципах мы разобрались — давайте теперь поговорим конкретно. Вас, вероятно, интересует резка какого‑то заказа. Раз вы изучаете информацию о лазерной резке.

Так давайте мы рассчитаем для вас его стоимость и сроки. Чтобы вы могли сравнивать с другими или прикидывать свои планы. С конкретными цифрами это будет серьезное планирование. А расчет вас ни к чему не обязывает. Отправьте нам свой контактный телефон, чтобы наш специалист перезвонил, выслушал и рассчитал всё необходимое.

Источник: http://metal-case.ru/tehnologija-lazernoj-rezki/

Понравилась статья? Поделиться с друзьями:
Металлург Онлайн
Как работает сварочный инвертор

Закрыть